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Other conditions for the existence of a solution of system (1.3) can be mentioned. For 
instance, for s~C(n)(O<a<i) and sufficiently small & the Schauder principle can be used, 
as is done in /l/. 

Different approximate methods /6, 8/ can be used to solve system (1.3). It should be 
taken into account here that the operator Q is Fr&het-differentiable only in certain sets 

OCL,. For instance, (as an operator acting from C(Q)cL,(Q) into &(Q), it is differentiable 
in the set 

0 = {v: “E c (Q), mes(M:v (M) = 0) = 0) 

REFERENCES 

1. GALANOV B.A., Spatial contact problems for elastic rough bodies during elastic-plastic 
deformations of the roughness. PMM, 40, 6, 1984. 

2. GLOWINSKI R., LIONS J.-L-and TREMOLIERE R., Numerical Investigation of Variational 
Inequalities. Mir, Moscow, 1979. 

3. FICHERA G., Existence Theorems in Elasticity Theory. Mir, Moscow, 1974. 
4. KRAVCHUK A.S.,. Formulation of the contact problem for several deformable bodies as a non- 

linear programming problem, PMM, 42, 3, 1976. 
5. RABINOVICH V.L. and SPEKTOR A.A., Solution of certain classes of spatial contact problems 

with unkown boundaries. Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, 2, 1985. 
6. VAINBERG M.M., The variational Method and the Method of Monotonic Operators in the Theory 

of Non-linear Equations. Nauka, Moscow, 1972. 
7. MIKHLIN S.G., Linear Partial Differential Equations. Vyssh. Shkola, Moscow, 1977.. 
8. KRASNOSEL'SKII M.A., VAINIKKO G.M., ZABREIKO P.P., RUTITSKII YA.V. and STETSENKO V.YA., 

Approximate Solution of Operator Equations. Nauka, Moscow, 1969. 

Translated by M.D.F. 

PMM U.S.S.R.,Vol.50,No.3,pp.361-367,1986 0021-8928/86 $lo.oo+O.OC 
Printed in Great Britain ~1987 Pergamon Journals Ltd. 

INVERSE CONTACT PROBLEMS OF THE THEORY OF PLASTICITY* 

V.I. KUZ'MENKO 

A class of inverse contact problems of the theory of plasticity dealing 
with the determination of the form of a stamp ensuring the prescribed 
final change in the body shape is studied. The problem is given in the 
form of a functional equation. The principle of compressive mapping is 
used to show the existence and uniqueness of the solution, and an 
iterative process is given for determining the required form of the stamp. 
A problem dealing with the form of the stamp ensuring the formation of 
trapezoidal indentations in the strip surface is solved as an example. 

1. Formulation of the problem. We shall connect a monotonically increasing parameter 
t, t E lo, Tl, with the process of quasistatic deformation of an elastoplastic body 8, and we 
shall call it time. We use, as the spatia-1 frame of reference, the Cartesian coordinate 
system 0~~q.z~. The symbols u1 (~,t),e~~(5,t),uil(t,t) denote the components of the vector of small 
displacements and of the small deformations and stress tensors at the point z = (rr,~~,rg), at 
the instant t. 

The body 56 is bounded by a piecewise smooth surface composed of three parts: up,, po, pc. 
The body is clamped over the surface p,, and the part p, is stress-free. The surface r, 
is acted upon by the moving stamp. We describethe form of the stamp surface by the function 

f (4 equal to the distance from the surface p, to the stamp surface along the normal to r,, 
at t=O. The law of motionofthe stamp as a rigid body is assumed given, does not depend on 
the form of the stamp, and must be chosen so that when t<t*, an elastoplastic deformation 
takes place in the body Q, while at t> t* we only have unloading or active elastic 
deformation. We assume that there is no contact whatsoever between the body and the stamp at 
t = T. 
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Let us formulate the conditions of interaction between the body and the stamp during the 
deforming process. We can construct, uniquely, for the given function f(z) determining the form 
of the stamp and for the given law of motion of the stamp as a rigid body, a function @(~,t) 
equal to the distance between the surface r, and the stamp surface measured along the normal 

to r,, at the instant t. We neglect the friction between the surface of the body and the 
stamp. The subscripts v and z will denote the normal and tangential components. Then the 
interaction between the body and the stamp will be characterized by the conditions /l, 2/ 

0, (5, t) < 0, % (I, t) = 0, UT (5, t) Q @ (2, t) (1.1) 
a, (x, t) [I& (3, f) - Q, (5, t)l = 0, vx E r,, vt E IO, Tl 

The relation between the stress and deformation states will be described by linear OK 
non-linear differential relations written in terms of the increments thus: 

daij = Aijkm (xl, %, . . . , % f&q,) dekn, (~4 

where Atjhm are continuously differentiable functions of their arguments, homogeneous in zero 
degree in deA and xXrxl, . . .,x, are the values of certain functionals of the history of 
deformation. The conditions imposed on the functions Aijkm were formulated in /2/. 

We assume that the plastic deformation does not alter-the elastic characteristics of the 
material, and we adopt the following linear law connecting the stresses and deformations under 
active elastic deformation and unloading: 

doij = Cijkm dekm (1.3) 

Also, c>O exists such that 

Cijkm hij d&b > c deij &{j (4.4) 

Let the parameters xlrxar . . .,x1(& < r) characterize the hardening of the material. We 
assume that @> 1 can be found for any &> 0 such, that 

Aij?sn (xl, % f . * t %5 dekq) deij dt?gm < wijh d%j dEkm 11.5) 

for xlB +x2% + . . . +x12> 6, and the value of @ does not depend on the history of the 
deformation. Condition (1.5) holds for most materials, and in the case of uniaxial deformation 
processes it means, in particular, that the tangential modulus must be smaller than the 
elastic modulus. 

We will now give a direct formulation of the inverse contact problem (ICP). we shall 
specify the form of the surface I', in the final state using the function fo(s),z~ rc whose 
values will be equal to the distances between the initial, undeformed surface rc, and the 
same surface in its final state. As earlier, the distance will be measured along the direction 
of the outer normal to the undeformed state of the surface rc. Then the ICP of the theory 
of plasticity will be formulated as follows: to determine the functionf(x) so that the form 
of the surface rc in its final state after plastic deformation and unloading is described by 
the function fe (z). 

2. Formulation of the fbnctional equation. Let us first introduce some mathematical 
concepts for subsequent use. We shall regard [EIr(Q)ls as a Sobolev space of vector functions 
u(s)= (u~(~),u~(~),~~(~)~ defined in B and square summable together with its first partial 
derivatives. We shall also introduce the spaces pf*(I',), HAI* of functions defined on the 
surface l?, with the corresponding norm /3/. We shall regard the elements of H'f,*(r,) as normal 
displacements of the points of the surface r,., and the elements of H-'l*(r,) as normal stresses 
on r,. 

Let us now consider the auxilliary direct problem which will be used in the formulation, 
study and solution of the functional equation of ICP. 

Problem 1. We will use the relations of the theory of plasticity (1.2). The zero boundary 
conditions are given in terms of displacements and stresses on the surfaces rU and r'~r 
respectively, and the surface r, is acted upon by the moving stamp. The form of the stamp 
must be chosen in such a manner, that when the stamp moves according to the given law, the 
distance between the surface I', and the stamp surface at the time t* is equal to the value 
of the given function Ip(x). If there is no contact at the points XE r, at the time t = t*, 
then the points undergo normal displacements +(r)- x,.&f*) according to a definite law. 
We require to determine the stress-deformation state in the body @ and the distribution of 
the normal contact stresses on l?, at the instant t*. 

Problem 2 is formulated just like problem 1, but the stresses and deformations are 
connected by the relations of the theory of elasticity (ls.3). 

Problem 3 represents the following problem of the linear theory of elasticity. The 
following forces are given on r,: 
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and the zero displacements and stresses on ru and rO, respectively. We require to determine 
the stress-deformation state in the body n and normal displacements of the points of the 
surface Fe. 

Every one of the above problems has a unique solution /l, 2/, and the normal displacements 
and normal contact stress distributions obtained belong to the spaces fl'z(r,) and H-l/l (r,), 
respectively. 

Let 0~ [H'(8)lS be a solution of Problem 2. We define the components of the deformation 
tensor by the Cauchy relations and introduce the function of the deformation energy density 

w (8:;') = l/ZCijkmE$)&l?& (2.1) 

Then we can place, in a unique manner, the number 

II 9 II = (j w (EIlj)) dQ)“’ (2.2) 

in 1:l correspondence with every function $~fl:a(r,). 
Since all axioms of the norm hold for III~II, it follows that the elementsJ,EH'i:(r,) can 

be regarded as the elements of the Banach space U with the norm (2.2). 
Similarly, having solved Problem 3 and having determined eij(a) , we introduce the norm of 

the elements q E H-‘l*(r,) as follows: 

and denote the corresponding Banach space of normal stresses with norm (2.3), by S. 
Let us introduce certain operators acting in the spaces U and S. The operator Qp: U+ S 

places in 1:l correspondence with every function $E U the distribution of normal stresses 

qE s, obtained by solving Problem 1. The action of the operator Q,:U+S differs from that 
of QP in the fact that the distribution of normal stresses q~ S is obtained while solving 
Problem 2. Finally, the operator Q,-‘:S+U is the inverse of Qe and places in 1:l 
correspondence with the functions qE S the displacements $EU obtained by solving Problem 
3. 

Using the above operators we will formulate the problem in the form of a functional 
equation. 

The normal contact stresses at the instant t* at which the unloading starts, are determined 
using the operators given above as follows: q* (x) = Qp [I# (z)]. Let us now subject the points 
of the surface rc in its final state, to normal displacements q(z) -fo(z). Assuming that the 
accompanying deformations are elastic, we obtain the corresponding normal stresses 47” (5) = 
Qe [$ (4 - fo (41. 

Assuming now that the elastic deformation is reversible, we use the theorem on unloading 
under contact interaction /4/ to conclude that the relation g*(z)= q** (z), VXE Fe must hold 
for the function q(z) corresponding to the required form of the stamp f(Z),. or 

Qp [Ip (41 = 0, III, (4 - fo (41 (2.4) 
Applying the operator Q.-r, we write Eq.(2.4) in the form 

$ (2) = J' 19 @)I, P [IPI = fo + Qe-‘Q& 
Thus the solution of ICP of the theory of plasticity is reduced to 

functional Eq.(2.5) for the normal displacements I+(Z) of the points of 
the instant at which the unloading starts. 

(2.5) 
the solution of the 
the surface r, at 

3. Existence and uniqueness of the solution of ICP. The 
of the formulation of the problem and the construction of the method of 
the principle of compressive mapping /5/. 

study of the correctness 
solution are based on 

Let us separate, in the space U, a closed convex set U0 of elements gE U satisfying 
the inequality & 

IlIp - fo - Q,-lQ& II < = II fo 111 = -= 1 (3.1) 
It is evident that the solution of the functional equation sought belongs to the set UO. 
Let us denote by &,($)C 8 the domain of active plastic deformations, at all the points 

of which xra+xza $-...-I-x~~>~, and hence where the inequality (1.5) holds. 

Lemma 1. A yO>O exists such that the following inequality holds for all IpElJo: 

me.3 (% (9)) > YO > 0 
We prove it by assuming the opposite. Assume that a function $,,E U, can be found for 

any y,,> 0 such that mes(Pp(-+))<yn. Selecting a sequence (y,,) converginq to zero we find that 
lim me8 (n,&)) = 0. But, if only an elastic deformation occurs at almost all points of the body, 
?%- 
then Q,-lQ,rp=@ and hence 
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II * ~ fo ~- Q;*Q,Q II = /If” II 

i.e. N can be found such that the functions I&, will not satisfy condition (3.1) for all n>.y. 
Let us denote by p'(q) th e F rechetderivativeofthe operator P at the point $E I:o. 

Lemma 2. When the assumptions made earlier hold, the following inequality is satisfied: 

Proof. We denote by dsijt doij the deformation and stress increments 
of solving Problem 2 of the theory of elasticity, when the increments in 

d+ are specified on Te. Then 

obtained as a result 
normal displacements 

Let w be the Fr&het differential of the operator P at the point $E UO. Subsequent 
proof consists of obtaining an estimate of the form IID$~~<cz/~d+[/, a<l , and includes four 
consecutive stages. 

lo. Using the components of the tensor deil of deformation increments obtained in the 
course of solving Problem 2, we define formally, at the points of the region Q,,(q); the 
components of some tensor do$) of stress increments with help of relations (1.2) of the theory 

of plasticity. We write da!:‘= doij in the region Q-Q,(q). From assumption (1.5) it follows 

that in Q,, do$‘dEi, < BldUijdeij almost everywhere. Then 

Using Lemma 
2O. Let us 

corresponding to 
According to the 
the functional 

(3.2) 
1 

T da$‘d’ijdQ =+ 
s 

d+..de..dSI+-l- , t, 2 s 
daijdeijd’K 

QpW Q-QpW 

-&I s 

1 
dsijdsijdn j--y 

s 
dai j deij dB = CLI [I d$ II2 

QpW Q-Q&W 

a1z I -(i -t&) 5 dsijdeijdR/ Sd.sijdt.ijdn 
Q,W a 

1 we conclude that a, <l. 

denote by de{;‘, dog’ the solution of the problem of the theory of plasticity 
the increments in normal displacements d$ on re specified at t= t*. 
extremal principle of displacement increments /6/, when no forces act on I',,, 

1 
T dGyj deij dB 

reaches its minimum value for the real increments dr@,do$ compared with all possible correspond- 
ing given increments * on Pe. We can use, in particular, deij, d@, as such possible increments. 
We therefore have 

3O. We write de(?) = CT! ,,k,,, d’Jkm@‘. Clearly, we haveinthe region of elastic deformations 
de$)= ds$, and in the'iegion Q,(q) inequality (1.5) takes the form 

$a(?) dc$;) < b,d?$) de\;). ‘3 IL< 1 

We arrive, as in stage lo, at the following inequality: 

1 
T 

d 
d$) de:;’ dB < + czp 

I 
ds$’ de%) dQ (3.4) 

OLZ = 1 - (1 - ih, 1 
Q#PP) 

d$) de!;) dR / 5 da$ de:;’ dLJ < 1 
Q 

Combining (3.3) and (3.4), we obtain the estimate 

1 
7 

s 
dn<;) de\;) dQ < czla~ 11 d+jr (3.5) 

P 

4O. Let dg@) be the normal stresses at the boundary obtained as a result of solving the 
problem of the.theory of plasticity, when the normal displacement increments drp are given 

on rc. Assuming that the stresses dq@) are known, we shall consider the problem of the theory 
of elasticity, with the normal stresses given on Tc. Let us denote by dqj@),dsij@) the deformation 
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and stress increments obtained in the course of solving the problem. Using the extremal principle 
principle of stress increments, we obtain the inequality 

We will now turn our attention to the fact that the increments dejj(4’,du*~‘~ are obtained 

from de@', do@ as a result of the action of the operator Qel, and dsi,“‘,du~lc2) are obtained in 
turn by the action of the operator Qp. Thus the increments d8~j”,du~~“’ correspond to the 
increments d%c4) resulting from the action of the operator Q;IQp. Assuming now that Df,,=O, we 
can regard the quantity 

as the norm 110911. Using the estimate (3.6) we conclude that 

R~n~~~~~, cc==, v*=u, 

and hence 

Theorem 1. Under the assumptions made, there exists a unique solution g,E U, of the 
functional Eq.(2.5), and $* can be obtained as the limit of the sequence {\P,,}, constructed 
with help oftbe recurrence relation 

%+1= P&n) (a=@, 1, 2, * * .) (3.7) 

where qO denotes any elements of U,. 

Proof * We shall utilize the formula of finite increments /5/ in the form 

and using Lemma 2 we conclude that 

IIP ($1) - p (*I)II< all91 - IPSII (3.8) 

The space U can be regarded as metric with the length p(&,$af =/I& -&Il. Then the 
inequality (3.8) will imply that the operator P is a compression operator /5/. The statement 
of the theorem follows at once from the principle of compressive mappings /5/. 

Theorem 1 refers to the problem of solving the functional Eq.(2.5). Using this theorem 
we will consider the problems of the existence and uniqueness of the solution of ICP. Let 
*p* be a solution of the functional Eq.(2.5). With the law of motion of the stamp specified, 
we can place the function js describing the form of the stamp, in 1:l correspondence with 
the function 9, in a unique manner. However, f+(z) will be the solution of ICP only when 
the normal contact stresses, in accordance with conditions (l.l), are non-positive at t = t* 
at almost all points of r,, Thus we arrive at the following alternative assertion. 

Tlreorem 2. In order,to study the problem of the existence and uniqueness of the solution 
of ICP of the theory of plasticity, and to actually find the required form of the stamp, we 
must solve the functional Eq.(2.5). If, for the solution q,(x) obtained the corresponding 
values of I&(X) are strictly positive on the set with non-zero measure in r,, then the ICP 
has no solution. If q* (z)< 0 for almost all sE I?,, then the ICP of the theory of plasticity 
has a unique solution,. 

Corollary . The ICP of the theory of plasticity with the final form foS(z) of the free 
surface r, additionally.specified, has no solutions for almost all given functions fos. 

Indeed, the ICP has a unique solution when only the final form of the surface I?, is given. 
In accordance with this solution, the final form of the free surface f. will also be unique 
and will not, in general, be the same as the given function foO. 

4. Numerical solution of the ICP. The method of solving the functional equation 
is in fact already given in Theorem 1, therefore we shall only consider certain particular 
aspects of its application and give the estimate for the rate of convergence. 

In accordance with Theorem 1, the solution of functional Eq.12.5) can be obtained by 
carrying out the iterative process 

q”+r=i-P($J (n=0,1,2,...1, %toEUo 

Problems 1 and 3 formulated in Sect.2 are used in the realization of the operators Qp 
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and Qe-' at every step of the iterative process. Existing numerical methods can be used 
effectively to solve such direct problems, e.g. the finite elements method and the boundary 
elements method. 

The rate of convergence of the sequence (&f obtained using relation (3.7) is characterized 
by the inequality /5/ 

and is in fact given by the quantity a = T/G 1 Let us consider the factors influencing a, 
using the estimates (3.2) and (3.4) obtained in the proof of Lemma 2. The constants & and 8% 
are proportional, in the case of uniaxial deformation, to the ratio of the tangential and 
elastic moduli. From (3.2) and (3.4) it follows that the rate of convergence increases as the 

-4 
(i 0.5 

Fig.1 Fig.2 

value of this ratio decreases. Further, the ratios of the integrals appearing in the estimates 
for a, and CL% show that when the relative volume of the regions of active plastic deformations 
increases, so does the rate of convergence of the sequence {a). We find that in the case of 
"deeper" impressions the rate of convergence is higher, since the region of plastic deformations 
increases, as a rule, with increasing depth of the impression. 

The above method was used to write a set of programs for solving the ICP for an elasto- 
plastic strip of finite size. The direct Problems I. and 3 were solved using the finite elements 
method based on the variational approach. 

We shall consider as an example the problem of determining the form of the stamp for which 
a final trapezoidal indentation is formed (Fig.1) on the surface z*= h under the conditions 
of plane deformation. From the corollary of Theorem 2 it follows that the final form of the 
free surfaces cannot be specified in advance, and is shown in Fig.1 by the dashed line. The 
limiting torsional elasticity is denoted by T# and the shear modulus by G. The dimensionless 
parameter w characterizes the depth of the final impression. The stamp can only move 
translationally in the direction of the OS, axis. 

The material of the strip is assumed to be homogeneous and isotropic. We use here the 
theory of small elastoplastic deformations for a linearly hardening material with the ratio 
of tangential to elastic modulus equal to 0.05. Poisson's ratio is taken to be equal to 0.3. 

In the course of discretization of the direct problems the cross-section of the strip 
was divided into 800 finite rectangular elements, We require 4-7 iterations to determine the 
form of the stamp with a mean-square error not exceeding O.OOiz&G,for ~=0.5;1; 1.5;2; 2.5,and the 
number of iterations required decreases as w increases, which is in full agreement with the 

analysis of the rate of convergence carried out above. 
Fig.2 shows the normal displacements g,(z,) of the points on the surface PC obtained in 

the course of solving the functional Eq.(Z.S), and the corresponding normal stresses 98 (Xl) 
on Fe fox various values of r~(~~=rp,G/(z&),@= Q&& The dashed lines show the form of the 
final imprint, displaced for clarity along the OX, axis. Note that the displacements obtained 
differ essentially from the form of the imprint. When z,~o.%, thedifference increases as LU 
increases, and decreases when 2,>0.5h. 

When w<1.5, the normal stresses are positive on the part zp== h of the surface. This 
leads us to the conclusibn that from Theorem 2 it follows that an imprint of a given form can 



367 

be obtained by impressing a stamp only when ut>l.S. In order to impress a stamp of given form 

to the required depth we must, for ut= 1.5;2;2.5 apply the forces per unit width of the strip, 

equal to 5.58~&, 5.97&, 6.22@. 
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GENERALIZED SOLUTIONS IN THE THEORY OF PLASTICITY* 

B.A. DRUYANOV 

Conditions prevailing on the surfaces of the strong velocity discontinuities 
in rigid-plastic media were studied by many workers, e.g. /l, 2/. However, 
in all cases known to the author the conditions were obtained by utilizing 
a passage to the limit, when the surface of the discontinuity was considered 
as a limit to which a layer tends, the layer undergoing an intense 
deformation and its thickness tending to zero. Meanwhile, it is desirable 
to obtain the conditions at the discontinuities by intrinsic means from 
the system of equations itself, without bringing in the irrelevant concepts 
on what represents the surface of the discontinuity. To this end the 
equations must be given in divergent form. In the theory of plasticity 
the main difficulties in this respect are encountered in connection with 
the law of flow and the law controlling the hardening. 

The present paper shows that certain generalization of the Mises 
principle makes it possible to impart to the inequality expressing it a 
divergent form and enables us to write it in integral form. From this it 
follows that in the incompressible 'plastic medium the surface of dis- 
continuity in the tangential velocity component serves as the surface of 
maximum tangential stresses , with tangential stress directed along the 
velocity jump vector. In a compressible plastic medium the stress 
discontinuity is determined from the condition that the direction of the 
six-dimensional deformation velocity "vector" is continuous. We note 
that the integral form of the Mises inequality was used in /3/ to prove 
the existence and uniqueness of the solution. It was not, however, given 
in divergent form, and the conditions at the discontinuities were not 
considered. 

With regard to the equation describing the hardening law, it can be 
reduced to divergent form when the specific plastic work is used as the 
hardening parameter. 

The problem considered here is that of steady motion of a strip of 
finite thickness undergoing oure shear, in a rigid-.plastic hardening 
medium. The emission of heat caused by plastic deformation and its effect 
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